育児と子育てのお悩みの相互解決コミュニティサイト
【子育て119TOPページ】   ■スピード雑談☆旬なあの噂・この噂掲示板に戻る■   最後のレス   1-   最新30  

NO.10018674

おバカなので教えて下さい

0 名前::2021/11/26 20:21
すみません。
頭があんまり賢くないので教えて下さい。

原価率からの売価設定です。
原価÷原価率
なぜ、原価を原価率で割れば売価が出てくるの?
こういった事を避けてきたので今のうちに学ぼうと思っています。
1 名前:匿名さん:2021/11/26 20:31
原価÷原価率=売価
70÷0.7=100

売価×原価率=原価
100×0.7=70
↑こっちを先に考えるとわかりやすいかも。
2 名前:匿名さん:2021/11/26 20:34
>>1
主さんではないけれど、たいへんわかりやすいと思いました。
3 名前:匿名さん:2021/11/26 20:40
>>2
みーつー
4 名前::2021/11/26 20:40
考えれば考える程混乱します。
掛けたり、割ったりとイメージがつかなくて。
もう少し掘り下げて教えて頂けませんか?
5 名前:匿名さん:2021/11/26 20:46
>>4
まず「原価率」というのがどういうものなのか考えてみましょう。

それがわかれば
売価×原価率=原価
がわかるはずです。
6 名前:匿名さん:2021/11/26 20:49
原価率っていうのが
売価に対しての割合だろうから・・・

1さんが素晴らしい式を出してくれてるし
あとは覚えるしかないような。
説明できないのに出てきてゴメンネ。

1000円の服の原価率が70パーセントで700円?
700÷0.7=1000
7 名前:匿名さん:2021/11/26 20:55
売価1000円のノートの原価が300円の時、

原価率は30%は分かるよね?
30%って、0.3ですよね。

では、

売価が1000円 で原価率が0.3(30%)なら
原価はいくら?

1000×0.3=300円
または
1000×30%=300円

ここまで分かるかな?

じゃあさ、

今度は売価が分からなくて、原価率と原価がわかってる時

売価をAとしたら、さっきの式の1000円がAになるから

A(売価)×0.3(原価率)=300(原価) になるよね。

となると、

A(売価)=300(原価)➗0.3(原価率)になるよね。

分かったかな?
8 名前::2021/11/26 21:17
>>7
売価が1000円 で原価率が0.3(30%)なら
原価はいくら?

1000×0.3=300円
または
1000×30%=300円

ここは大丈夫です。
大元(売上)に対しての原価はどれくらいの比率か?
ということで30%占めてるということ。

売価が1000円 で原価率が0.3(30%)なら
原価はいくら?

1000×0.3=300円
または
1000×30%=300円

ここがイマイチ、ピンとこないです。
でも

売価をAとしたら、さっきの式の1000円がAになるから

A(売価)×0.3(原価率)=300(原価) になるよね。

となると、

A(売価)=300(原価)➗0.3(原価率)になるよね。

この意味なら納得します。

ご丁寧にありがとうございます。

ピンとこない箇所を教えて下さい。
9 名前:匿名さん:2021/11/26 21:22
>>8
同じ部分を「分かる」「ピンと来ない」って
書いてるよー。
10 名前:匿名:2021/11/26 21:31
>>9
あら、ほんとだ!
コピー&貼り付けしたからおかしなことになってますね💦

ピンとこない箇所は売価に原価率を掛けると原価になる箇所です。

あ~恥ずかしい。
でも苦手なことから逃げたくないんですよね
11 名前:匿名さん:2021/11/26 21:34
>>10
わかった部分はどこなんですか?
12 名前::2021/11/26 21:36
原価率の求め方と売価Aに代入する部分です。

どうしても売価×原価率=原価になる理屈がピンとこないんです。
13 名前:匿名さん:2021/11/26 21:36
>>10
ごめん。苦手ってレベルなのかな?
何をしようとしているのかわからないけど、
会計的な事は向いてないかもよ。

人あたりは良さそうだから、接客業とかがいいかも。

的はずれだったらごめんなさい。
14 名前::2021/11/26 21:43
>>13
はい。
苦手な分野です。
今の仕事で時々そういった事を求められるので理屈を理解しないと置いてきぼりになっちゃうんです。
15 名前:匿名さん:2021/11/26 21:53
まずは、「原価」「売値」「原価率」って言葉の意味をきちんと理解することから始めた方が良さそう。

言葉を理解していたら言葉で書かれた公式を理解できないってことはないと思うので。
16 名前:匿名さん:2021/11/26 21:58
単純に分数や少数を使った割り算が分からないとか?
17 名前:匿名さん:2021/11/26 22:02
スーパーとかデパートとかのセールとかで
何割引だといくらになる、ってのが分かれば、
分かるレベルの話なんだけどなー。

ただ一つ一つに名前がついてるだけで。
18 名前:匿名さん:2021/11/26 22:06
距離÷時速=時間
時速×時間=距離
距離÷時間=時速

↑これは分かるの?


これと同じ感じだよ。
ただ、売価と原価率と原価がグルグルしてるだけ。
19 名前::2021/11/26 22:08
お恥ずかしい話し、分数・小数は引いてしまう。

デパートでの買い物は何となくやってる。
色々教えて頂いたので、しばらく考えます。
ありがとうございます。
20 名前::2021/11/26 22:11
>>18
これはこのまま公式として覚えた。
何も考えずに。
だから応用が効かないのよ。
皆様ありがとう。
21 名前:匿名さん:2021/11/26 22:16
一般消費者は原価率が幾らかなんて、いちいち調べないし。
22 名前::2021/11/26 22:23
仕事で求められるのよー(涙)もう理解しないと席がなくなる。
その理屈さ分かれば舞い上ってしまう!

あともう1つ利益率からの売価の求め方も簡単に教えて下さい。
23 名前:16:2021/11/26 22:25
>>19
私もよ笑

なんで700円(原価)÷原価率0.7が売価なの?にはなる笑

多分丸覚えするからわからないままかも
24 名前:匿名さん:2021/11/26 22:27
>>22
利益率って
利益率➕原価=売価
なら
原価率に換算すればすぐできるのでは?
25 名前:匿名さん:2021/11/26 22:30
>>24
利益率➕原価=売価


↑これは違うよー。
利益➕原価=売価ではあるけど。
26 名前:匿名さん:2021/11/26 22:37
>>22
型で覚えて、仕事こなせないの?
27 名前:匿名さん:2021/11/26 22:39
>>22
いや、ここまで分からないのに、
仕事で求められるとするなら、
それはやはり無理な仕事なのではない?
28 名前:匿名さん:2021/11/26 22:39
そこまで真剣ならここで聞かずに
ググって調べるだろうに。
今はYouTubeとかでもあるかもよ。
29 名前:匿名さん:2021/11/26 22:46
>>25
そか。ごめん
利益率なら原価率だね
30 名前:匿名さん:2021/11/26 22:56
原価率とは、売り上げに対して原価がどれくらいあるかの比率

原価率=原価÷売価

200円で仕入れたものを、250円で売ると、原価率は0.8
だから、%に直すと80%

原価率と原価がわかってる時、

原価率の公式に当てはめると、

200÷x=0.8
÷xが邪魔だから、両辺にxをかける。

そしたら、0.8かけるx=200 になる。
掛け算は、前から掛けても後ろから掛けても同じ答えになるから、
x=200÷0.8
x=250
31 名前:匿名さん:2021/11/26 23:05
>>30
利益率は、売り上げに対して利益がどれだけの比率か
だから、30の例でいくと、
200円で仕入れたものを250円で売るから、50円が利益。

利益率=利益÷売価
の公式に当てはめると、
50÷250=0.2
20%。

利益率から売価を求めるには、
50÷x=0.2
0.2x=50
50÷0.2=250

小数で表してるけど、

利益+原価=売価

0.2+0.8=1

売価を100%とした時、原価は何%か?を求めたいなら、原価÷売価、利益は何%かを求めたいなら、利益÷売価、ってこと。
32 名前:匿名さん:2021/11/27 00:36
>>12
売価を、100等分したうちの80個ぶんが、原価ですよ
って意味で

例えば
1000円×(80/100)=800円

で、どう?
算数でそう考えてた気がするけど違うかな。
33 名前:匿名さん:2021/11/27 11:15
わかりにくい説明になってしまうかもしれないが
合計の金額を量で割ると、単価が求まります。

例えば、
リンゴ2個で200円の時、リンゴ1個の値段は
200÷2=100円 というのは、すんなり理解できると思います。

では、
リンゴ1.5個で150円の時、リンゴ1個の値段は
150÷1.5=100円 となります。

リンゴ0.5個で50円の時、リンゴ1個の値段は
50÷0.5=100円 となります。

原価率40%といういのは、売値の0.4が原価です。
原価(売値の0.4)が400円の時、売価は
400÷0.4=1000円 となります。
34 名前:匿名さん:2021/11/27 11:23
主さん、
「売価が1000円 で原価率が0.3(30%)なら原価はいくら?
 1000×0.3=300円」
これはわかる、

原価300円÷0.3で売価1000円と、式を変形させることもできる、

わからないのは、
「原価÷原価率が売価になる理屈」ってことでしょうか?
時速の計算にしても、公式としては使えるけれど、なんで?って思ってしまうということかなと読んでいて思いました。

私も、売価×原価率=原価は意味がわかる、
売価・原価・原価率、知りたいものに合わせてこの式を変形させて求めることはできる。
けれど、「原価を原価率で割るってどういうこと???」って思ってしまい、なんだかまごまごします。

えっとね、「=」のとらえ方だと思うんですよ。

原価÷原価率=売価
これを言葉で言うとしたら、
「原価を原価率で割ると売価になる」って言いますか?
もしそうだとしたら、私と同じもやもやです。
「=」は「になる」ではありません、「同じ」です。
「原価を原価率で割った数値と売価の数値は同じ」です。

主さんはおバカではありませんよ。
算数ではなく、数学として考えているのです。
公式に当てはめて答えを出すのは算数、なぜそこがイコールなの?と考えるのは数学ではないでしょうか。

なぜそこがイコールになるのか?を私には正確に説明はできないけれど、
数学をやってる息子に私が主さんと同じような質問をしたときに、
「考え方が間違っている、イコールは計算結果を書く欄ではない、イコールは“同じ”と言う記号だよ」
と言われ、すごくすっきりし、変形させた公式にあてはめることにもやもやしなくなりました。

「1+1=2」は、「1と1を合わせると2になる」ではなく、
「1と1を合わせたものは、2と同じ」

余計にややこしくさせたかしら(笑)
35 名前:16:2021/11/27 11:29
みんな親切だなあ


700円÷0.7(原価率)=1000円売価

700円÷7/10(10分の7)=1000円
700円×10/7(7分の10)=1000円

とか?
36 名前:匿名さん:2021/11/27 14:21
日常ではなんとなく分かっているけど、ここまで追求するのは、仕事に関係あるから?
37 名前:匿名さん:2021/11/27 15:01

売価1000円の原価率が0.3で原価が300円の場合

原価は売価の30%なので、原価300円を30(%)で割ると売価の1%、10円です。

300÷30=10

これに100かけてやると売価が出ます。

10×100=1000

つまり、30で割って100かけるですよね。

原価÷原価率はこの二つの計算を一つの式にしています。
÷0.3は分数で表すと ÷30/100です。
分数で割る場合、分母と分子をひっくり返してかけ算にするから ×100/30
かけると割るの順序は逆ですが、「30で割って100かける」で同じです。

300÷0.3=300÷30/100=300×100/30

私も算数は苦手なんだけど、こんな風に考えます。
38 名前::2021/11/27 19:13
皆様…
ありがとうございます(涙)
本来なら呆れてしまわれるような質問にここまで親切に教えて下さり感謝します。
今日は一日仕事でして、今帰ってきてようやく一息ついたところです。
色んな角度から教えて下さった事で本当に感謝してます。

別件で仕事のことで教えてもらっている時に、このように掘り下げて聞いてしまうので相手は呆れて「もうこれで大丈夫だから」と納得しないまま不完全燃焼が多いんです。
理解能力が不足してるのもあるし、きっと仕事があっていないんだと思います。
転職しようにも行く所が無い年齢なので食いついていくしかありません。
きっと苦手な事を克服し、これから先の意味あることなのかな?と思いながらいます。
今一度ゆっくり皆様のアドバイスを見ます。
また「教えて下さい!」というかも知れませんがその時はお願いします。
39 名前:匿名さん:2021/11/27 19:27
>>38
よくわかります。私も向いてなくても転職はしたくない。
でもメンタル的に悪いので来期は
配置換えの頭数に入れてもらおうと思ってます。
キツイけど頑張るしかないですよね。

このスレ参考になりましたよ。ありがとうございます。
主さん頑張ってて偉いです。
40 名前::2021/11/27 19:44
>>39
ありがとうございます!
もう逃げたくないんです。
年齢的に遅いかも知れないけど、必ずやり遂げる力があるからこその試練だと思い、またこれからの人生に何かしら学んで良かったと思う場面が必ず出てくるんです。
今までもそうでした。
やって無駄なことは無かったと。
ここで相談できて良かった。
「X」を使った式を解くなんて久しぶりで解けた瞬間は楽しいものですね。
41 名前:匿名さん:2022/02/13 00:06
あげます
42 名前:匿名さん:2022/02/13 01:35
逃げて来たって何だろうって考えちゃった。
授業でやっても解かないでほったらかし
そこが0点でもしょうがないとあきらめるとか
仕事で使うことがあっても流して知ったかぶりか
私わかんないんで!ってだれかにやってもらってたってことか?
43 名前:もっとわからん:2022/02/13 11:37
>>37
原価でなに?
44 名前:匿名さん:2022/02/13 14:06
>>42
それはこの人の過去スレ読めばわかるよ。
45 名前:匿名さん:2022/02/13 14:24
ノートに書いておいてね。
46 名前:匿名さん:2022/02/13 20:21
前にも割合のこと聞いてきた人?
他のスレも立てている人?

いい加減、ノート書いて、覚えなよ。
小学生の問題だよ。
47 名前:匿名さん:2022/02/13 20:30
>>46
古スレだよ?

<< 前のページへ 1 次のページ >>


トリップパスについて

(必須)